If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+4t-3=0
a = 4.9; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·4.9·(-3)
Δ = 74.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-\sqrt{74.8}}{2*4.9}=\frac{-4-\sqrt{74.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+\sqrt{74.8}}{2*4.9}=\frac{-4+\sqrt{74.8}}{9.8} $
| -5y^2+34y-48=0 | | X²-13x=-42 | | 9^x=58 | | 5x+12=12x+-12 | | 25/14=x/7 | | p=1/2p | | 7(2m-3)-4=3(4m+1) | | V^2+20v-2600=0 | | 15x+41=11x+53 | | f+7/4=-3 | | n/11-8=2 | | 15/x=1.618 | | 4(e+1)=32 | | 2¼y=1¼y–8 | | 1(x-4)=10 | | -3(2y+1)=-9 | | n/11-5=12 | | n/12-11=5 | | x+4(3x-1)=3x-1 | | 1/7=x/122 | | 11/n-7=6 | | n/11-7=6 | | n/3-10=5 | | 4(-5y+-10)=60 | | 2.3x+36=0.33x | | (13x^2-19)=(9x^+6) | | x=13x-3x | | 180-(24+x)=180-(3x-6) | | Y=2x-9÷3 | | |3x−2|+3=7|3x−2|+3=7 | | 180-((x+24)+(2x-2))=180-(4x-9) | | P=5x570-1000 |